Persamaan Linier Dua Variabel dan Tiga Variabel: Pengertian dan Ciri-Cirinya
Persamaan Linier Dua Variabel dan Tiga Variabel: Pengertian dan Ciri-Cirinya
Pengertian Persamaan Linear
Menurut informasi yang dikutip dari Cuemath,
persamaan linear merujuk pada persamaan yang memiliki pangkat tertinggi pada
variabel selalu berjumlah satu. Dikenal juga dengan istilah persamaan derajat
satu, dalam persamaan linear, terdapat unsur-unsur seperti variabel, koefisien,
dan konstanta.
Mengacu pada penjelasan yang diambil dari
Splash Learn, variabel adalah simbol yang digunakan untuk merepresentasikan
nilai numerik yang tidak diketahui dalam suatu persamaan. Nilai dalam variabel
dapat bervariasi dan dapat diubah-ubah. Di sisi lain, koefisien merupakan angka
yang menggambarkan banyaknya suatu variabel, ditempatkan sebelum variabel.
Konstanta adalah nilai tetap atau angka yang tak berubah.
Ciri-Ciri Persamaan Linear
Persamaan linear memiliki beberapa ciri khusus,
yaitu:
1.
Persamaan linear
memiliki pangkat tertinggi pada variabel adalah satu.
2.
Tidak terdapat
perkalian antar variabel dalam persamaan linear.
3.
Persamaan linear
dibentuk oleh dua bagian yang terhubung dengan tanda sama dengan (=).
4.
Penambahan,
pengurangan, perkalian, atau pembagian pada kedua bagian persamaan tidak
mengubah nilai keseluruhan persamaan.
Jenis-Jenis Persamaan Linear
Persamaan linear dikategorikan menjadi tiga
jenis utama berdasarkan jumlah variabel yang ada, yaitu persamaan linear satu
variabel, dua variabel, dan tiga variabel.
1.
Persamaan
Linear Satu Variabel
Persamaan
linear satu variabel adalah persamaan yang hanya mengandung satu variabel.
Contoh bentuk umum dari persamaan linear satu variabel adalah ax + b = 0.
Persamaan ini merupakan yang paling sederhana dan paling mudah dalam mencari
solusinya.
2.
Persamaan
Linear Dua Variabel
Persamaan
linear dua variabel melibatkan dua variabel dalam formulasi persamaannya.
Contoh bentuk umumnya adalah ax + by + c = 0, di mana x dan y adalah variabel
berpangkat satu. Solusi untuk persamaan ini lebih kompleks karena melibatkan
metode eliminasi, substitusi, grafik, serta menggunakan determinan.
3.
Persamaan
Linear Tiga Variabel
Persamaan
linear tiga variabel adalah jenis persamaan yang melibatkan tiga variabel.
Bentuk umum persamaan ini adalah ax + by + cz = d, dengan x, y, dan z sebagai
variabel berpangkat satu. Penyelesaian persamaan tiga variabel memanfaatkan
metode yang hampir serupa dengan persamaan dua variabel, namun dengan tingkat
kompleksitas yang lebih tinggi.
Pembelajaran tentang persamaan linear di dunia matematika memiliki arti penting. Ini melibatkan konsep dasar seperti variabel, koefisien, dan konstanta. Persamaan linear memiliki karakteristik yang khas dan terbagi menjadi tiga jenis utama, yaitu persamaan satu, dua, dan tiga variabel. Pemahaman terhadap jenis persamaan ini akan membekali kita dalam menyelesaikan berbagai masalah matematika yang melibatkan variabel dan relasi linier di antaranya.